skip to main content


Search for: All records

Creators/Authors contains: "Wang, Ting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As the overuse of chemicals in our disinfection processes becomes an ever-growing concern, alternative approaches to reduce and replace the usage of chemicals is warranted. Electric field treatment has shown promising potential to have synergistic effects with standard chemical-based methods as they both target the cell membrane specifically. In this study, we use a lab-on-a-chip device to understand, observe, and quantify the synergistic effect between electric field treatment and copper inactivation. Observations in situ, and at a single cell level, ensure us that the combined approach has an enhancement effect leading more bacteria to be weakened by electric field treatment and susceptible to inactivation by copper ion permeation. The synergistic effects of electric field treatment and copper can be visually concluded here, enabling the further study of this technology to optimally develop, mature, and scale for its various applications in the future.

     
    more » « less
  2. Free, publicly-accessible full text available October 1, 2024
  3. Tunable piezoelectric metasurfaces have been proposed as a means of adaptively steering incident elastic waves for various applications in vibration mitigation and control. Bonding piezoelectric material to thin structures introduces electromechanical coupling, enabling structural dynamics to be altered via tunable electric shunts connected across each unit cell. For example, by carefully calibrating the inductive shunts, it is possible to implement the discrete phase shifts necessary for gradient-based waveguiding behaviors. However, experimental validations of localized phase shifting are challenging due to the narrow bandgap of local resonators, resulting in poor transmission of incident waves and high sensitivity to transient noise. These factors, in combination with the difficulties in experimental circuitry synthesis, can lead to significant variability of data acquired within the bandgap operating region. This paper presents a systematic approach for extracting localized phase shifts by taking advantage of the inherent correlation between the incident and transmitted wavefronts. During this procedure, matched filtering greatly reduces noise in the transmitted signal when operating in or near bandgap frequencies. Experimental results demonstrate phase shifts as large as −170° within the locally resonant bandgap, with an average 28% reduction in error relative to a direct time domain measurement of phase, enabling effective comparison of the dispersive behavior with corresponding analytical and finite element models. In addition to demonstrating the tunable waveguide characteristics of a piezoelectric metasurface, this technique can easily be extended to validate localized phase shifting of other elastic waveguiding metasurfaces.

     
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  4. There are increasing requirements for data center interconnection (DCI) services, which use fiber to connect any DC distributed in a metro area and quickly establish high-capacity optical paths between cloud services and mobile edge computing and the users. In such networks, coherent transceivers with various optical frequency ranges, modulators, and modulation formats installed at each connection point must be used to meet service requirements such as fast-varying traffic requests between user computing resources. This requires technology and architectures that enable users and DCI operators to cooperate to achieve fast provisioning of WDM links and flexible route switching in a short time, independent of the transceiver’s implementation and characteristics. We propose an approach to estimate the end-to-end (EtE) generalized signal-to-noise ratio (GSNR) accurately in a short time, not by measuring the GSNR at the operational route and wavelength for the EtE optical path but by simply applying a quality of transmission probe channel link by link, at a wavelength/modulation-format convenient for measurement. Assuming connections between transceivers of various frequency ranges, modulators, and modulation formats, we propose a device software architecture in which the DCI operator optimizes the transmission mode between user transceivers with high accuracy using only common parameters such as the bit error rate. In this paper, we first implement software libraries for fast WDM provisioning and experimentally build different routes to verify the accuracy of this approach. For the operational EtE GSNR measurements, the accuracy estimated from the sum of the measurements for each link was 0.6 dB, and the wavelength-dependent error was about 0.2 dB. Then, using field fibers deployed in the NSF COSMOS testbed, a Linux-based transmission device software architecture, and transceivers with different optical frequency ranges, modulators, and modulation formats, the fast WDM provisioning of an optical path was completed within 6 min.

     
    more » « less
  5. Tol, Serife ; Nouh, Mostafa A. ; Shahab, Shima ; Yang, Jinkyu ; Huang, Guoliang (Ed.)
    Free, publicly-accessible full text available April 28, 2024
  6. Su, Zhongqing ; Limongelli, Maria Pina ; Glisic, Branko (Ed.)
  7. Free, publicly-accessible full text available October 1, 2024
  8. We demonstrated under six minutes automatic provisioning of optical paths over field- deployed alien access links and WDM carrier links using commercial-grade ROADMs, whitebox mux- ponders, and multi-vendor transceivers. With channel probing, transfer learning, and Gaussian noise model, we achieved an estimation error (Q-factor) below 0.7 dB. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024